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I. INTRODUCTION

Numerical simulation of collisionless plasmas may be achieved by either

numerically solving the Vlasov and Poisson equations, or by computing the
motions of a large number of charged particles that are moving in their self-
consistent electric field. Although the two methods seek the same ends, they

differ fundamentally in their approach and comparison of their results is not

3

trivial.
This paper presents numerical solutions of the Vlasov and Poisson equa-
tions for several physically significant problems, and compares those
solutions with the results of particle simulations. Close quantitative agree-
ment is found. Such comparisons provide insight into the validity and limita-
tions of both methods. The problems considered are one-dimensional with
periodic boundary conditions, and involve only electrons moving over a uniform
positively charged background.
Numerical solutions of the Vlasov and Poisson equations have been
carried out by following the distribution function directly in phase plane, t-3

and by transform methods. The most significant transform methods to date

are, the Fourier-Fourier method, 4 in which the distribution function is
Fourier-transformed with respect to both pusition and velocity, and the
Fourier-Hermite method, > in which the distribution function is Fourier-trans-
formed with respect to positi.: and its velocity dependence is represented by

a series using Hermite polyncmials. The numerical solutions presented here

are based on the Fourier-Fourier methcd. Earlier solations based on this




method had been Limited to two or three modes in the spatial representation.
The present solut“ons include up to 85 mwodes and are capable of representing
strong nonlincar effects,

Particle simulation of plasmas has been applied to a variety of problems.
In this mwethod, quantities such as the electric field, or mean velocity, which
depend on moments of the distribution function, are subject to random noise.
Special techniques are used in the present solutions to suppress this noise and
{o accurately control the initial conditiens of the plasma so that quantitative
comparisons with Vlasov solutiecns can be made,

Section II of the paper reviews the Fourier-Fourier method ased in the
solution of the Vlasov equation, which in its main features follows the method
of Knorr, 1 A similar review of the particle simwulation method and initializa-
tion techniques is given in Sec. III. This is followed in Sec. IV by the results
of comparative studies of the two methods for four cases, These cases were
chosen among problems which had been considered earlier in the literature,
so that comparison could be made not only between the present solutions, but
also with carlier numerical studies.

For both the Vlasov and particle solutions presented here. time is meas-
urcd in units of u);)i. where u)p is the plasma frequency, length is measured
in units of the perwdicity length I, of the system, and velocity is measured
in units of pr. It follows that the electric field is measured in nnits of

hl

[ .
mLw /e, where e and m are the electron charge and mass, reapectively,

p




Ii. FOURIER-FOURIER TRANSFORM METHOD

In terras of the above units, the one -dimensional Vlasov equation for

elecirone takes the form

of = of af 1
at = VY oax av ' M

where f(x,v,t) denotes the one-dimensional electron distribution tunction and
E{x,t) is the electric field. l.et E{x, i) = Een(x.t) + Eim(x.t). where Ec‘“
is an external field and Eint is the internal field due to electrons and the
positively charged background. The internal field is determined by Poisson's

eguation

int v o0

9E ) ,
G S l- ) fav . (2)
- 00

Taking Fourier transforms of the distribution function with respect to
position and velocity and applying periodic boundary conditions in space with

periodicity length L = 1 yields

vtoo H
Hn(q,t) = 5 exp (iqv) de f(x,v,t) exp (-27inx) dx
[ ) [a)

9
The functions Hn(q. t) are the characteristic functions  for each mode. n
denotes the mode number in space, and q is the velocity transform variable,

A Fourier transform in space of E(x,t) yields the modes of the electric field,

1
En(t) = X E(x,t) exp(-2minx) dx

o]

Since f(x,v,t) and E(x,t) must be real valued, we hae




N ¢ .

H-n(q ’ t) = Hn(' qn t, ’
(3)
E (t) = E (t)
-n n
After transformation and truncation at a finite number of modes mmax’ which

will be retained in numerical computations, the Vlasov equation yields

BHn 8Hn
3v * 27n el 57 C, (a0, (4)
where
m
max
> . = 271 E (t) F
c_(.0) "“Z E_®H _(q,0 (5)
ms=-m

max
is a convolution term which comes from the nonlinear term of the Vlasov

equation. Poisson's equatior gives

'_].nt__;!.;_7 - ‘A
-2Ti En == dn(q_O) for n# {

and E™ - 0.
o
Equations (4) are solved by integration along their characteristics, which
are straight lines of slop~ 27n in the (t, q) plane, as shown in Fig. 1. At

cach time step, the value of Hn(q ,t) is obtained from the iterative formula

" _ . 1
Hn (gq,t) = Hn(q- 2iTnAt, t-At) + 4”(_q-21rn4t) At Cn(q -2Tn At, t - At)

(1)

at) : (6)

1
+ an thC

in which the superscript denotes the number of iterations carried out. The

results presented in this paper were cbtained using a single iteration.




From the definition of the convolutions Cn’ Eq. (6) gives the improved

i+l . )
approximations H(1 ), for n=m yees, tm , in terms of linear com-
n max max
(i)

binations of the preceding approximations Hn . The matrix o1 the coefficients

of these linear combinations is

0 E_1 E1 r.._z 1

ith - — - !

A = -—2 E1 0 E2 E__1 ese !
E_1 E_2 0 E_3

and the iterative process defined by Eq. (6) converges only if all eigenvalues

A, for j= -m yeees +m , of this matrix are smaller than unity.
j max max
T
Letting A~ denote the transposed matrix of A, we have

2

T 2
l)\jl < Trace(AA") = (qAt) mmaxU

where U is the total electrostatic energy. The iterative process is convergenti,

therefore, if

1/2 4
qma.x At (mmax U) <1 ! (7)

where qmax is the maximam value of q retzined in the computation. This
criterion is satisfied by adjusting the time step At according to the magnitude
of the electrostatic energy.

Values of q in Eq. (6) are chosen to fall at grid points, as shown in
Fig. 1. The values of Hn at q - 2Tn At, then,donotfall at the grid points,

and must be interpolated using neighboring points. A nine-point Lagrangian

5
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interpolation was used in the computations presented. If Aq denotes the
interval between grid points, we expect the distribution fanction f(x,v,t) to
be adequately defined over the interval “Vohax < v < Vmax in which

Vmax i l/Aq.

The characteristic functions H (q,t), for n=0,...,m are evaluated
n max

over the interval =q < g . Values of Hn(q,t) for negative values

“9max max
oi n are found from the reality conditions (3). At the lower boundary,
97 -q . the values of Hn(q -2TnAt, t - At) needed ir Eq. (6) are unknown.
These values are set equal to zero, thus introducing a cutoff for the charac-
teristic functions at q = iq'max' The introduction of cutoffs mma.x and qmax
is equivalent to a smoothing of the distribution function f(x,v,t) defined by

~ [+ o]

flx,v,t) = y wv(v')dv' S‘l wx(x') fix+ x', v+v't)dx'

-0 o

where f(x,v,t) is the smoothed distribution function, and

and

sing v
max

are weight functions, The function W has a half-width Ax =~ l/meax, and
the function w has a half width Av = ﬂ/qm . The choice of the cutoff
v ax
values m and q must be made so that the half-widths Ax and Av
max max

are small compared to characteristic lengths and velocities in the plasra.




The particle code considered in this paper uses finite-size particles
having a Gaussian charge distributior with half-width a (see Sec. II'). After
Fourier transfcrmation in space and application of Poisson's equaion, this
is equivalent to multiplying the electric field -fim of each mode by tne form
factor Wm = exp[-(2ma m)z]. To represent the effect of finite -size particles
in the Vlasov solution, this form factor may be incorporated into the convolu-

tion term:

m
max

Cn(q,t) = -2T1 Z Wm Em(t) Hn_m(q,t) . {8)
m=-m
max
This modified form of the convolution reduces to the original form given by
Eq. (5) if the form factor Wm is set equal to anity,

The introduction of the form factor Wrn modifies the dispersion relation

of the plasma, which becomes

w 9f [ov
2Tn + W Y —2 dv =0 :
n w W-2Tnv

where n is the mode number and w the corresponding complex frequency.

The kinetic energy 1is given by

q=0

where Hf(q,t) is the real part of Ho(q, t) and the electrostatic energy is

given by
m
_max W ,
U = Z ~— |H @=0,1)]" . (10)
2 n
n=l (27n)
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Fach term of the convcluiion array C  is the sum of m terms.
n max
Since there are m ax terms in the array, the computing time required tc
. . L. . Z
evaluate the convolution hy direct summation is proportional to m ax’ The
m
compating time is significantly reduced by using discrete Fouricer transforms
to evaluate the convolution. The arrays H (q,t) and E (t) are Fourier-
n n
transformed, their transforms are multiplied, and an inverse transform of
the product :s carried cut to obtain the convoluticn array C . Since Hn and
n
En are not defined cyclicaliy, bui instead are zero for _|n |> m o it is
necessary to append zeros to both ends of the arrays before carrying out the

. . . 1 .
transforms. Using a fast Fourier transform algorithm, the computing

time becomes proportional to m This method is advantageous

max logz M max’

for m > 10,
max

III. PARTICLE SIMULATION METRHOD

The particle cods investigates the electrostatic behavior of a plasma by
simply following the motion of a large number of electrons in their self-
consistent (and any externally imposed) fields. Such codes are widzly used in

. . 6-& . . . :
computational plasma physics. The basic scheme consists of a very simple
cycle. The positions cf the particles determine the charge density, which by
Poisson's equation gives the self-consistent electric field. In one dimension
and in terms of the dimensionless unite used in this paper, Pcisson's equation

takes the form

12

int )
- —1-. (x)
- N 2 P '

|
H]
—




where p (x) is the charge density contributed by particle j and N is the
)
total number of particles. The particle velocities and positions are then

updated by the laws of dynamics, using a standard leapfrog scheme

v=-E

Continuing about this basic cycle advances the system in time. Of course,
one must use a time st¢ep sufficiently small to accurately follow the time
variation of the forces in the system, One tenth of wp 1s generally adequate.
In these codes one also inevitably needs to discretize space, i.e.. to
introduce a regularly spaced grid. How one then defines the relevant physical

quantities on that grid is the principal place where various particle codes

12,13

differ. We here use a multipole expansion scheme and finite-size particles.

The charge density is then defined on the grid by a multipole expansion of the
particle's charge density about its nearest grid-point location. We briefly
illustrate the procedure: Consider a particle j with a Gaussian charge distribu-

tion having a half-width a.

exp [-(x - xj)z/?.az]

p.x)= -
3 (21!)1/2 a

Here xi is the center-of-mass location of the particle. Introduce a grid and
describe the particle position as xj =nd + ij , where § is the cell size and
n denotes the nearest grid-point location, ij is at most §/2. Hence,

assuming 8/2a << 1, we expand the charge density as follows:

e mem—
L




exp[-(x-nb)z/l'.az]
em'/? a

{x - nd)

2
a

= - 1 .+ ... .
Pj(x) [T+ AxJ ]

Clearly we arc replacing the finite-size particle centered somewhere in the
cell, by a finite-size particle centered at the nearest grid point, plus a
finite-size dipole there, plus (in principle} higher-order multipole terms.
In practice we stop at the dipole correction. Summing over a collection of
particles and introducing a Fourier transform gives the total charge density

in Fourier transform space as

pk) = - exp (-kZaZ/Z) exp (-iknd) [Q(n) - ikP(n) + ...]

Y

Here Q(n) and P(n) are arrays giving the net monopole and dipole moments
. . . . e 2 2,

asscciated with the nth grid peint. Notice the form factor exp(-k a /23,
which arises due to the finite particle size. The electric field is now determined
simply by an inverse Fourier transform. The force on the particle is given by
the same multipole expansion procedure. Physically this amounts to repre-
senting the force on the finite-size particle as its monopole moment times the
electric field, plus the dipole moment times the derivative of the field.

The multipole expansion scheme is very appealing. First, it represents
a systematic and physical way to introduce the spatial grid. Indeed, an

. . . 7,8

expansion parameter has been exhibited. Charge-sharing schemes can be
related to the multipole expansion by stopping at the dipole approximation and
representing derivative terms by a difference over cells. Second, the multi-

pole expansion scheme relates the numerical approximation resulting from

10




introducing a grid to physical concepts. One is investigating the physics of
a plasma of firite-size particles, and hence there are some modifications of
) 14 .. . .
the plasma behavior. In general, the finite size of the particle enters the
analysis via the form factor, the Fourier transform of the particle charge
distribution. For exzmple, for Gaussian particles, the form factor is
2 . .
exp (-kza /2). We see that the long-wavelength (collective) behavior of the
system is essentially unaltered, but the short-wavelength (ka > 1) behavior is
systematically suppressed. This is welcome, since short-wavelength behavior
(A < cell size) cannot be repres=nted accurately due to the finite size of the
grid. Furthermore, its suppression lowers the noise level and hence lowers
15 .
the effective collision frequency. This yields more realistic simulations with
fewer particles.
A further technique used for reducing the noise level in the particle code
3 X 1" 3 [ 16 : .
is known as a ''quiet start." A quiet start simply refers to beginning the
calrulat'on with ordered initial conditions. Basically, no random numbers
are used to set up the calculations., A set of J discrete velocities is chosen
using the probability function
v
p = P(v) = 51 f(v) dv ,
-0
where f(v) is the desired velocity distribution function. The procedure is

illustrated in Fig. 2 for the case of a Maxwellian distribution fun~tion. A

set of J values, pj (j - 0.5)/F with j=1,...,7J, are chosen, equally spaced

1. The corresponding velocities, v, = P (pj)' are then

between p = C and p

11




distributed according to the distribution function f(v).n Sets with J varying
from 100 to 1600 were used in the present computations. Equal numbers of
particles are then loaded at each grid point. The particles may be loaded
identically at all grid points using all the velocities in the set {vj} , and J
particles per cell are then needed. However, the particles form a number
of discrete small beams, which are subject to instabilities, and spurious
oscillations may appear. 18 This difficulty is reduced by using a larger number
of beams. To achieve this without increasing the total number of particles,
the particle velocities are staggered so that each discrete velocity is repre-
sented only at every kth grid point. For example, the set of velocities may
be divided into k subsets by picking every kth value of the criginal set. The
particles are then loaded at different grid points with different subsets, repeat-
ing the same loading every kth cell. The repetition length k6 should be much
smaller than any physical length of interest in the problera.

The quiet start eliminates the initial noise level, and indeed leaves one
the option of starting the computations with 3pecified initial conditions. An
initial density distribution p(x) may be obtained by giving the particles initial
displacements from their uniform distribution at the grid points. If £(x)
denotes the displacement of a particle loaded at x, and po denotes the uniform

density before displacements, then £(x) is found by integrating the equation

a _ _Po

dx  plx + §)
The possibility of controlling initial conditions is important for detailed
comparisons with other codes —in particular, with the Vlasov code considered
in this paper.

12




IV. RESULTS

Case A

Consider a two-stream instability resulting from the initial conditioas

defined by the distribution function

f(x,v,t = 0) tfo(v) [1+ 2€ cos 2mx] , (11)
with
f (v) = N S— v2 exp (-vZ/Zw‘rZ ) (12)
o (211)1/2 v3 th
th
and v._. = 0.30/m, € =2.5X% 10-2. These initial ccnditions correspond to a

th
system length L = 10.5 XD. The initially excited mode, as shown in Eq. (11),

has a wavelength equal to the length of the systern. The linear growth rates
for this problem have been computed by Grant and Feix.19 The first mode
is the only unstable mode and has a growth rate y = 0.25. Vlascv solutions
for this problem have been carried out by Armstrong and Montgomery
using the Fourier-Hermite method. Comparisons between Fourier-Hermite
solutions and particle-in-cell solutions have also been made by Armstrong
and Nielson. 21

The solid curve in Fig. 3 corresponds to the total electrostatic energy for
the Vlasov solution, with m - 21, Uax = 256, and Aq = 4. This energy
grows at approximately the linear growth rate from t = 10 to t = 20, and

saturates at 2.2% of the total energy. At the time of saturation, the bounce

frequency of electrons in the unstable large wave (0.33) is roughly equal to

13
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the linear growth rate of the instability (0.24). This is a reasonable result
for saturation, since a large wave significantly modifies the particle dy-
namics in a time = l/wB. After saturation, the electrostatic energy cscil-
lates with a period of approximately 20. The frequency of trapped electron
oacillations at saturation is w_ = 0.33, which corresponds to a trapping

B
period 7. =19.2.

R

The amplitude of the first mode (n = 1) is apprcximately an order of
magnitude larger than the amplitudes of the other modes (n= 2). The higher
modes, however, have a significant effect on the solution, as shown by the
broken line ir Fig. 3 (which corresponds to mmax = 10). The Vlasov solu-
tion was checked by reversing it at t = 20, and the small brcken line near

= 0 in Fig. 3 shows the deviation.

The circles in Fig. 3 correspond to the particle solution with 51,200
particles and 256 cells. The particle half-width is a = 1.2506, where & is
the cell size. The initial particle positions and velccities were chosen to
match the initial conditions of the Vlasov sclution, using the quiet-start
method of Sec, III with 1600 velocities. Since there were 200 particles per
cell, the initial velocity distribution was repeated every 8 cells,

Conservation of energy was checked in both the Viasov and particle solu-
tions. The relative energy error is 2 X 10 -4 for the Vlasov solution and
1.2 X 10"4 for the particie solution. To give some idea of the computing
time, the unoptimized Vlasov code required ~ 13 min. on the 360/91 for this
problem. This compared reasonably with the time ¢f ~ 15 min. required by

;. 22
the unoptimized particle code.

14




Several additional runs on the particle code were made to investigate
spurious oscillations which had been observed in earlier runs with fewer
discrete beams. The solid line in Fig. 4 shows the electrostatic energy
when i00 particles are loaded identically at every grid point, thus forming
100 discrete beams. In contrast to the smooth behavior of the 1600-beam
case shown in Fig. 3, strong oscillations of the fundamental (n = 1) with a
frequency w = 2 are now superimpcsed. These oscillations may te attri-
buted to beaming instabilities, since they do not appear when the number of
beams is increased. With the present quiet-start technique, the most
unstable beams are those representing the tails of the distribution function,
since thev are the most widely separated. With 100 discrete velocities, the

last three beams are located at v, = 2.78, 2.99, and 3. 37 vt

b h’

The frecquency of beaming instabiiities is given by w = kvb, where k is the
wave number. In the present case, k corresponds to the fundamentai; i.e.,
k=271. With vy >~ 3 Vip We then have w =~ 1,8, which agrees with the
observed frequency. The ohserved growth rate of these spurious oscilla-
tions is ~ kAV, where AV is typical of the last few widely spaced beams.

To confirm that the spurious oscillations are caused by the instability of

beams around vb =3 vth'

a run was made in which only the last two beams
at each end of the distribution function were staggered. The resulting
electrostatic energy is shown by the broken line in Fig. 4. Indeed, the
spurious oacillations now appear rignificantly iater in time. This is

expected, of course, since the less separated beams, which were not

staggered, are alsc subject to instabilities but with srnaller growth rates.

15
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Case B

‘We now cansider a second case of a two-stream instability with equal
beams, in which several unstable modes are allowed to grow. The initial

conditicns for this case are

21
fc,vit= 0) = £ (v)  [L+ 2€ Z cos @Tnx+¢ )] (13)
n=1
with
1 2,2 2,2
f (v) = WZT [exr'-(V+vd) /vp + exp-(v-v,) /vp] , (14)
p

and v, = N2 X 10'2, vy" 2vp,e - 5x10'3. The initial phase angles ¢n are chosen
at random ir the interval (0, 2m). These initial conditions correspond to a
system length of 100 AD’ and the dispersion relation shows that modes

1 to 6 are unstable. This case was studied by Morse and Nielson23 using the
particle-in-cell methcod.

The total electrostatic energy for the Vlasov solution is given by the solid
line in Fig. 5. This solution was carried out with mma.x =21, qrnax = 1000 and
Aq =15, 6. The electrostatic energy reaches approcimately 6.7% of the total
energy. We again observe that the instability saturates when the electron
bounce frequency in the dominant wave (0.28) is approximately equal to its
linear growth rate (0.26).

The broken line in Fig. 5 corresponds to the particle solution with 25, 600
particles and 256 cells. A quiet start was used to match the initial conditions

of the Vlasov code, including the same values of the phase angles ¢n. Only

16




100 velocities were used. The discrete beams set up by the quiet-start method

are rapidly disrupted by the collective instability in the present case, and no

spurious insiabilities are observed. The relative energy error is

1.2 X 10-4 fur the Vlasov golution, and 0.8 X 10-3 for the particle soluticn.
Ccmparisons of densities in phase space for the Viasov and particle solu-

tions at different times are given in Figs. 5,7, and 8§, For the Vlasov

solutions, numbers from 1 to 9 denote relative densities. Blanks correspond

to densities which are less than one tenth of the maximum density. Negative

signs correspond to negative values of the density. which occur because no form

factors were used in the present computation, For the particle solution, an

asterisk was printed at every location where at least one particle is present.
The results of Morse and Nielson for this case agree qualitatively with

the present results. The electrostatic energy in their case reaches only

5% of the total energy, and does not give the two distinct peaks shown in

Fig. 5. However, the case considered by Morse and Nielson corresponded

to a longer system lengith (L = 500 AD). In addition, these authors did not

control the initial conditions of their computations, but allowed the instability

to grow from the noise resulting from a random choice of initial particle

velocities. Their phase density plots agree with those of Figs. 6,7, and 8,

showing the same coalescing of the eddies when their system's length of

500 )\D is taken into account.

17




Case C

We now exarmine an instability resulting from the iute.action of a small

beam with a Maxwellian plasma. The initial conditions are

21
flx,v,t = 0) = fo(v) [L+ 2¢ Z n cos (27nx + zbn)] , (15)
n=1
with
1 2,2 2,2
fo(V,\ = - {np exp (-v /vp) +n,_ exp [-(v-vd) /vb]} . (16)

Here vp = (1/’\/—2) 10-‘2. V4T 2.6vp, vy F 0.25 vp, np = 0.95, n = 0.05,
€=2.5 10_4 and the initial phase angles ¢n are chosen at random. Thus

the small beam contains 5% of the plasma, and its mean velocity is 3.66
thermal velocities. These initial conditions correspond to a system length

cf 100 AD. The dispersion relation shows that modes 1 to 9 are now unstable,
This case was also studied by Morse and Nielson, 23 using the particle-in-
cell method.

The total electrostatic energy for the Vlasov solution without form faciors
is shown by the solid line in Fig. 9. This solution was carried out with
m =4,q_ = 25/vp, and AqQ = qmax/lzs, The electrostatic energy
reachss 1.6% of the totul energy. Again the instability saturates when the
electron bounce frequency in the dominant mode (0.16) is approximately
equal to its linear growth rate {0.15).

It has generally beeu {uvnd that each trapping region requires a minimum

of 8 to 10 modes for its representation. In Case A, where the most unstable
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mode is the fundamental one and a single trapping region is present through
the system, qualitatively correct results were obtained with L 10.
In the present case, mode m = 5 is the most unstable, and 42 modes were
found to be necessary to obtain a convergent solution., A solution with
mo 10 gave qualitatively different results beyond saturation. For
wpt > 40, the m o 10 solution gave trapping oscillations which continued
to grow in amplitude instead of dropping to the low levels shown in Fig. 9.
The circles in Fig. 9 correspond te the particle solution with 61, 440
particles and 256 celis. A quiet start was used again, to match the iritial
conditions of the Vlasov solutions. In the present case, 960 velocity classes
were used to maintain the small-beam instabilities at a low level. The rela-
tive energy error was = 10 -4 for the Vlasov solution and = 3 10-4 for the
particle solution.
The results of Morse and Nielson in this case again agree qualitatively
with the present results. The saturation electrostatic energy in their solu-
tion was 2% of the total energy instead of the 1.6% in the present solutions.

This difference may again be due to the longer length of their system (200 AD)

and to random initial perturbations.
Case D

This case is concerned with sideband instabilities resulting from the
motion of trapped particles in a large-amplitude electrostatic wave. The
excitation of large-amplitude waves by means of an electrosiatic probe

immersed in a warm plasma has been described by Wharton, Malmberg,
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and O'Neil. 24 These experiments showed the expected amplitude modulation
of the wave, which is attributed to electron trapping, but they also disclosed
the appearance of sidebands to the frequency of the main wave. The growth
of these sidebands has been attributed by Kruer, Dawson, and Sudanzc to an
instability due to particles trapped in the large -amplitude wave, and has
been observed by Kruer and Dawson in particle simulations.

In the present computations, the initial distribution function of the plasma

is defined by

42
f(x,v,t=0) = fo(v) [1+2¢ Z ncos (2Tnx + ¢n)] , (17)
n=1
with
1 2 2
f (v) = exp[-(v /2v,)] . (18)
o (21’_)1/2 th

Here Vin = 1.06/44m, € = 0.0002 and the initial phase angles are chosen at

random. These initial conditions correspond to a plasma length L = 130 AD.
»

Mode n = 5 is then driven from t = 0 to t = 6 by the external field )

E%*'x,t) = E__ sin (@t + o) (19)

DR
with EDR/vth =0.3and w_= 1.06. The driving frequency w_ is the Bohm-
Gross frequency corresponding to mode n = 5. and the ratio of the phase
velocity of the driving wave to the thermal velocity is wo/Zﬂn Vih T 4. 4.

The electrostatic energies of the main wave anc sidebands from the Vlasov

and particle solutions are compared in Figs. 10 and 1I. The particle solu-

tion was carried out with 256 cells and 200 particles per cell. A quiet start
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was used with 1600 discrete velocities to represent the distribution function.
The particles were givendisplacements to matchthe in:tial density perturbation

defined by Eq. (17). The particle half-width was a = 26 = AD' where § is

the cell length. The Vlasov solution was carried out with m < 42, thus

allowing approximateiy 8 modes for each trapping region. The truncation in

velocity transform was at Qo = 8/vth and the grid spacing was Aq = 1/8vth.

These values correspond te 4 velocity resolution Av = n/qmax = vth/4 and

a maximum velocity Vinax ~1/Aq = 8'.rth. A form factor was applied to the
electric field of the Vlasov solution corresponding to the particle half-width

a= AD used in the particle code. 4

The relative energy error was 4 X 10

for the particle solution and 3 X 10-4 for the Vlasov solution.

The main wave energy (electrostatic energy of mode n = 5) and the lower
sideband energy (sum of the electrostatic energies of modes n = 1to 4) are

shown in Fig. 10 on a logarithmic scale. The main wave energy rises rapidly

during the driving period to 29.4% of the initial kinetic energy, after which

it oscillates with approximately the trapping oscillation period (TTR = 20.7).
We observe close agreement between the Vlasov and particle solutions for

the main wave, Indeed, the two curves are nearly identical until late in the

simulation. The lower sideband energy from the Vlasov and particle solu-

tions grows at the same rate (a ten-foiding time of ~ 31) and even saturates

at the same level, The lower sidebands saturate when they acquire an energy

comparable to that of the large wave. Then the sideband waves disrupt the

particle trapping in the original large wave, as confirmed by phase space

plots. It should be emphasized that this problem is very nonlinear and is a
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strong test of both of the simulation techniques. We are accurately following
not only sizeable oscillations in the large wave energy, but alsc simultaneous
growth of oscillations at other wave numbers.,

The upper sideband energy from both solutions is shown in Fig. 11. The
main wave energy has been repeated on this figure to provide a reference.
Again, the two solutions agree well and even saturate at the same level,

The saturation level of the upper sideband is approximately an order of
magnitude below the saturation level of the lower sidebands. This lower
saturation level is reasonable since the upper sidebands have phase velocities
less than that of the main wave and hence are more readily damped by the
particles.

Several additional solutions were carried out with both the Vlasov and
the particle codes. The Vlasov solutions included a computation with
m ox- 85 and a weaker form factor (a = AD/Z). This computation showed
only minor variations from the results of Figs. 10 and 11, The particle
solutions included one with fewer beams, to describe the distribution func-
tion. This calculation showed that details of the saturation levels (but not
the growth rates) are sensitive to the number of beams used. This is rea-
sonable, since the trapped particles responsible for the sidebands come
from the tail of the initial distribution, which is rather poorly represented

if too few beams are used.
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SUMMARY

This paper has presented quantitative comparisons of particle simu-
lations with multiple-mode solutions of the Vlasov equation including up to
8% modes. Previous solutions of this type had been limited to a few modes
only. The problems considered ranged in complexity from a two-stream
instability involving a single unstable mode and low electrostatic energy (2.2%
of the total energy) to an instability due to particles trapped in a large-ampli-
tude plasma wave. By using quiet starts to initialize tha particle simulations
and using a sufficient number of beams to suppress beaming instabilities,
c'ose agreement was found between the two methods.

Since the two methods differ fundamentally in their approach, the
agreement found confirms their validity. However, the problems considered
have shown limitations in both methods, which must be taken into account in
the physical interpretation of numerical simulation results. Discrete particle
effects in particle simulations, which are particularly evident in regions of
low density in phase space, yield beaming instabilities which must be mini-
mized or accounted for in the physical interpretation of the results. Similarly,
solutions of the Vlasov equation tend to develop i.. reasingly fine structures
with increasing time. The fine structures are suppressed by truncation of the
Fourier expansions to a finite number of modes, but enough modes must be
retained to make the half-widths Ax= 1/2 moo and Av= n/qmax small
compared to the characteristic lengths and velocities of the phenomena being
consider=d. As indicated in the discussion of Case III, approximately 8 to 10
modes are needed to represent each trapping region and the solution may be

altered in its general character if fewer modes are retained.
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Fig. 1 - Characteristics of Eq. (4) in the (t, q) plane
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